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Abstract

A finite population version of block kriging (FPBK) estimates a total or a mean when there
is perfect detection of population units. However, many environmental datasets challenge the
assumption of perfect detection. We consider two extensions of FPBK that incorporate imperfect
detection. Spatial-Population-Estimator-with-Detection-Ratio-then-Add (SPEDRA) adjusts observed
counts by the estimated detection probability prior to spatial modeling. Spatial-Population-Estimator-with-
Detection-Add-then-Ratio (SPEDAR) uses spatial modeling on observed counts and then adjusts
by mean detection probability. Unlike classical sampling approaches such as simple random
sampling, SPEDRA and SPEDAR allow for spatial correlation among counts, and, being moment-based,
are less computationally intensive than a fully Bayesian model. Both SPEDRA and SPEDAR
perform similarly in some simulation settings and give comparable estimates for a moose population
total when applied to data from Togiak National Wildlife Refuge (AK). In settings where detection
probability varies widely across sites, however, SPEDRA outperforms SPEDAR in reducing root
mean square prediction error. We recommend SPEDRA in surveys with imperfect detection
because it is more theoretically sound and generally performs better.
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1 Introduction1

Abundance surveys for flora and fauna populations are often used to estimate the total count of2

a particular species for a variety of purposes, including management and ecological research of3

population dynamics. However, in a quantitative review of the ecological literature, Kellner and4

Swihart (2014) find that only 23% of ecological papers involved in estimating species abundance5

incorporate imperfect detection. Finite population block kriging (FPBK) is a geostatistical approach6

to predict the total abundance in a particular region from counts that may be spatially autocorrelated;7

however, it assumes perfect detection (Ver Hoef, 2001, 2008). Our overall goal is to extend FPBK8

to allow for imperfect detection.9

Failing to incorporate imperfect detection gives biased results in fields ranging from freshwater10

biology (e.g., Gwinn et al., 2016) to species distribution analysis (e.g., Lahoz-Monfort et al., 2014)11

to estimation of the abundance of rare species (e.g., MacKenzie et al., 2005). Gu and Swihart12

(2004) argue for the importance of establishing relationships between detection probability and13

habitat covariates, as even detection that is almost perfect can heavily bias regression coefficients14

in modeling relationships between covariates and the presence of wildlife. More specifically to the15

topic of abundance estimation, Kéry and Schmidt (2008) discuss how patterns in the total count of16

an animal can be confounded with patterns in the detection probability.17

A variety of methods have been proposed to estimate population abundance when some animals18

go unobserved. A basic method of incorporating imperfect detection is the Lincoln-Petersen19

estimator in mark-recapture studies (Petersen, 1896; Lincoln and others, 1930). Since their inception,20

mark-recapture methods have increased enormously in use and model complexity (e.g. Gould21

and Pollock, 2002; McCrea and Morgan, 2014; Otis et al., 1978). The basic mark-recapture22

can be extended to a hierarchical spatial mark-recapture method for populations with high spatial23

correlation (Royle and Young, 2008). Distance sampling is another class of methods that incorporates24

imperfect detection by assuming that detection probability is a function of distance from a point25
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or a transect line. Like mark-recapture, many studies have used distance sampling. For example,26

Peters et al. (2014) used distance sampling for moose surveys in Canada. Buckland et al. (2001)27

and Buckland et al. (2004) provide a more general introduction to distance sampling. Another28

method used in large-scale abundance estimation surveys is double sampling (Wilm et al., 1944),29

in which the surveyors sample a subset of the area of interest intensively to provide an adjustment30

for detection (Eberhardt and Simmons, 1987; Pollock et al., 2002). In estimating total moose31

abundance in Alaska, the double sampling method is used with stratified sampling on plot-based32

aerial counts (Gasaway et al., 1986).33

One major flaw in these approaches is that, though traditional mark-recapture, distance sampling,34

and double sampling adjust for perception bias (missed animals caused by observer error), they do35

not easily account for availability bias (missed animals caused by animals not being “available”36

to be observed). With some studies, a separate “sightability” survey is carried out to address37

availability bias. Madsen et al. (2020) use separate sightability data collected through radiocollars38

and parametric bootstrapping to calculate the uncertainty in detection estimates, but assume that39

the counts are spatially uncorrelated. Boveng et al. (2003) adjust for availability bias in estimating40

harbor seal counts with radiotelemetry data while Ver Hoef et al. (2014) expand on the model by41

allowing for spatial autocorrelation among the counts. Other methods only require a single survey,42

but assume that covariates associated with abundance and detection are readily available (Sólymos43

et al., 2012).44

1.1 Finite Population Block Kriging Background45

FPBK (Ver Hoef, 2001) was originally developed for moose surveys in Alaska. The Alaska46

Department of Fish & Game (ADF&G) denotes the FPBK estimator as the Geospatial Population47

Estimator (GSPE) throughout its literature, which includes an operations manual (Kellie and DeLong,48

2006) and a software user’s guide (DeLong, 2006). The method has been widely used to estimate49

moose population totals throughout Alaska and western Canada, as 524 moose surveys have been50
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analyzed using FPBK from 1997 to 2015 covering 303,144 square miles. The ADF&G maintains51

a database of moose surveys, which, as of 2015, comprises 53,153 records. Estimating moose52

populations is an important goal for wildlife management throughout many parts of Alaska and53

Canada. In particular, Boertje et al. (2009) describe the significance of using sustainable yields to54

regulate the harvesting of moose in the Alaskan interior, and sustainable yields depend on accurate55

estimates of abundance.56

FPBK differs from the usual block kriging method (Cressie, 1993, pg. 106 - 107) in that the57

number of sampling units is finite. The differences between the two methods are analogous to58

using the finite population correction factor in sampling theory (Ver Hoef, 2002). If we only have59

N distinct sampling units in our area of interest, the standard block kriging estimator will have an60

inflated variance, particularly if the ratio of sampled units to the total number of units is large.61

Classical sampling can also be used to predict a population total with a finite number of sample62

units under the assumption that a random sample of sites was chosen, which was originally used63

for moose surveys in Alaska (Gasaway et al., 1986). An advantage of classical sampling compared64

with FPBK is that classical sampling requires few assumptions about the data because inference65

comes from the sampling design, which we often have complete control over (Ver Hoef, 2002).66

Variations of design-based sampling in the spatial setting are investigated in Stevens Jr and Olsen67

(2003), Fattorini et al. (2015), and Vagheggini et al. (2016), all of which assume perfect detection68

of units.69

However, if we make the assumption that the data were generated under a spatial stochastic70

process, then a model-based approach like FPBK often results in an estimator with lower prediction71

variance. Chan-Golston et al. (2020) discuss a Bayesian approach to model-based inference for72

finite populations of a continuous response variable in a spatial setting. For more discussion73

of design-based versus model-based inference, see Sarndal et al. (1978). Because inference for74

model-based approaches is based on assumptions about the stochastic process, not the sampling75

design, FPBK allows for the possibility of nonrandom sampling to lower prediction variance even76
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more. This is particularly useful if management is interested in small area estimation. For classical77

sampling, there is no guarantee that adequate sampling will be done in the small area, but, with the78

possibility of nonrandom sampling, managers have more control over the survey design (Ver Hoef,79

2002; Kellie and DeLong, 2006).80

1.2 Imperfect Detection Modeling81

There are several sensible estimators when imperfect detection occurs. Observed counts can be82

divided by estimated detection probabilities site-wise followed by FPBK. This adjusted estimator83

(which we will call SPEDRA, Spatial Population Estimator with Detection: Ratio then Add) is84

Horvitz-Thompson-like in that it uses detection probabilities in place of inclusion probabilities85

(Horvitz and Thompson, 1952). A second possibility is to first use FPBK and then divide the86

estimated total by the mean detection probability (SPEDAR, Spatial Population Estimator with87

Detection: Add then Ratio). The SPEDAR method is similar to estimators by Manly et al. (1996)88

and Borchers et al. (1998), which both divide averaged counts by a mean detection probability.89

For illustration of this problem in a simpler setting, suppose that we have only six plots that are

completely independent and that we would like to estimate the total count in the six plots based on

a survey of four plots in which the observed counts are wi = 3, 5, 2, and 0. From a separate survey,

suppose we estimate that the detection probabilities for these four plots are b⇡i = 0.2, 0.9, 0.7, and

0.5, respectively. Then, for the first estimator, we would predict the total count T̂1 to be

T̂1 =
nX

i=1

wi

b⇡i
· N
n

=

✓
3

0.2
+

5

0.9
+

2

0.7
+

0

0.5

◆
· 6
4
= 35.

For the second estimator, we would predict the total count T̂2 to be

T̂2 =

P
wiP
b⇡i

·N =

✓
3 + 5 + 2 + 0

0.2 + 0.9 + 0.7 + 0.5

◆
· 6 = 26,

where wi is the observed count on site i, b⇡i is the estimated detection probability on site i, N is90

the total number of sites, and n is the number of sampled sites. The estimators are identical when91

⇡1 = ⇡2 = . . . = ⇡n.92
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In this very simple example, the estimators are quite different. If we know detection exactly,93

then SPEDRA is unbiased. However, similar to Horvitz-Thompson estimators (Horvitz and Thompson,94

1952), the variance of the estimator has the potential to become very large, particularly for small95

detection probabilities. Therefore, unless the detection probabilities are all equal, we anticipate96

that SPEDRA will be less biased than SPEDAR, but could have a much higher variance. On the97

other hand, SPEDAR is obviously biased, but may be more robust than SPEDRA.98

1.3 Goals and Organization99

Our goals are to (1) develop a model-based (geostatistical) approach to predict the total abundance100

in a region of interest using a version of FPBK that adjusts for imperfect detection, (2) validate101

and compare the SPEDRA and SPEDAR models through a simulation study, and (3) apply the102

methods to a moose data set in Togiak National Wildlife Refuge. The adjusted FPBK estimator is103

useful for population abundance prediction problems where there is spatial autocorrelation in the104

counts and detection of the animals or plants in a sampling unit is not perfect.105

In Section 2, we review FPBK assuming perfect detection and then develop the SPEDRA and106

SPEDAR models for incorporating imperfect detection. Next, in Section 3, we present results from107

a simulation study before applying the two estimators to real data from a March 2017 Togiak moose108

survey in Section 4. We conclude in Section 5 with some remarks comparing the two estimators109

as well as some discussion on possible extensions to the models developed here.110

2 Adjusting the FPBK Model for Imperfect Detection111

We use the following three results frequently in the adjusted FPBK estimators. In particular,112

the expression for the variance of a product of two random variables (1) will be quite useful for113

SPEDRA because we will model an observed count at a particular site as the product of the true114

count and the estimated detection probability at that site.115
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2.1 Basic Equations116

Let x and y be random column vectors with means µx and µy and variances Vx and Vy, respectively.117

Also, let x be independent of y. Then, an extension of the variance of the product of two random118

variables (Goodman, 1960) is the following multivariate version (Ver Hoef et al., 2014):119

var(x� y) = (µxµ
0
x)�Vy + (µyµ

0
y)�Vx +Vx �Vy, (1)

where � denotes element-wise, or Hadamard, product.120

We will also make use of the conditional variance and conditional covariance laws in developing121

the model,122

var(Y ) = E[var(Y |X)] + var[E(Y |X)], (2)
123

cov(Y1, Y2) = E[cov(Y1, Y2|X1, X2)] + cov[E(Y1|X1, X2),E(Y2|X1, X2)]. (3)

2.2 Background of FPBK124

The following is a brief summary of Ver Hoef (2001, 2008), which proposes the FPBK model125

assuming perfect detection. If D is a spatial lattice indexed on a finite set of points i = 1, 2, . . . , N ,126

then let count Z(si) be a random variable at the ith site where si is a vector of the spatial coordinates127

of the ith site. Our goal is to predict b0
z̃, where z̃ is a column vector of the realized values of Z(si)128

for i = 1, . . . , N and b can be a vector where each element is 1 if we want to predict the population129

total, a vector where each element is 1/N if we want to predict the population mean, or a mix of130

1’s and 0’s if we want to predict the total for a subset of D. Then, we want to find ⌧̂(b0
z̃) = a

0
z̃s, a131

linear combination of the observed data in order to predict b0
z̃, where z̃s is a vector of the observed132

data for the sampled locations in D and a
0 is a vector of weights.133

Let Y (si) = x
0(si)� + ✏(si) be a spatial random field. The error term ✏(si) is a spatial error134

process with 0 mean and a spatially autocorrelated covariance matrix ⌃(✓), where ⌃(✓) depends135

on just a few parameters ✓. Also, x0(si) is a vector of covariates at location si, and � is a parameter136
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vector. For the remainder of this paper, we use the exponential covariance model for ⌃(✓). That137

is, the i, jth entry for ⌃(✓) is138

cov("(si), "(sj)|✓) = ✓1 exp(�hi,j/✓2) = ⌃i,j, (4)

where hi,j is the distance between si and sj . Note, however, that any spatial covariance matrix139

could be used (Chiles and Delfiner, 1999, pg. 80 - 93).140

We then allow Z(si) to have the following conditional moments:

E[Z(si)|Y (si)] = Y (si),

var[Z(si)|Y (si)] = ✓3.

Here, Z(si)|Y (si) is independent of Z(sj)|Y (sj) when si 6= sj and ✓3 is the nugget effect.141

A spatial random field with exponential autocovariance function (4) is second-order stationary,142

meaning that the mean is constant and the covariance is a function only of the separation vector143

between any two locations, and it is isotropic, meaning it is a function of distance only (Cressie,144

1993; Gelfand et al., 2010). However, the results that follow can be extended to other types145

of autocovariance models, including models that include one or two extra parameters to model146

anisotropy (Chiles and Delfiner, 1999, pg. 94).147

Note that we could also use an autoregressive model, such as a conditional autoregressive148

(CAR) model (Besag, 1974) to model the spatial process. In general, such models are natural for149

finite sets of spatial data (Cressie, 1993, pg. 8) and can have a large computational advantage150

because the inverse covariance matrix is specified (e.g., Ver Hoef et al., 2018). However, when151

there are missing data, as with incomplete sampling, then obtaining the marginal distribution of152

the sampled data requires inverting the precision matrix, forming the covariance matrix for the153

data from the subset of rows and columns, and then inverting again for prediction (Ver Hoef et al.,154

2018). Additionally, the autocorrelation and variances are nonstationary. Therefore, we focus on155

the geostatistical model.156
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Using the laws of conditional expectation, conditional variance (2), conditional covariance (3),157

and the independence of Z(si)|Y (si) and Z(sj)|Y (sj), we obtain E[Z(si)] = µ(si), var[Z(si)] =158

✓3 + ⌃i,i, and cov[Z(si), Z(sj)] = ⌃i,j , where µ(si) = x
0(si)� and ⌃i,j is the i, jth element of159

⌃(✓).160

For simpler notation, we can represent z, the vector of the random variables Z(si), using the161

following linear model, with zs denoting the vector of {Z(si)} for the sampled locations in D and162

zu denoting the vector of {Z(si)} for the unsampled locations in D:163
0

B@
zs

zu

1

CA =

0

B@
Xs

Xu

1

CA� +

0

B@
�s

�u

1

CA , (5)

where Xs and Xu are the design matrices for the sampled and unsampled sites, respectively, and164

�s and �u are zero-mean random errors for the sampled and unsampled sites. Denote µ = X� as165

the vector of the µ(si). If � = [�s �u]0, then E(�) = 0 and166

var(�) ⌘ D = diag(✓3)+⌃(✓) =

0

B@
diag(✓3) +⌃ss ⌃su

⌃
0
su diag(✓3) +⌃uu

1

CA ⌘

0

B@
Dss Dsu

D
0
su Duu

1

CA , (6)

where diag(✓3) is the diagonal matrix with diagonal elements ✓3, ⌃ss is the submatrix of var(✏) ⌘167

⌃(✓) for the sampled locations, ⌃su is the covariance of the sampled sites with the unsampled168

sites, and ⌃uu is the submatrix of ⌃(✓) for the unsampled locations.169

Then, the best linear unbiased predictor (BLUP) of b0
z is170

⌧̂(b0
z) = b

0
szs + b

0
uẑu, (7)

where bs and bu are subvectors of b corresponding to the sampled and unsampled locations in D,171

respectively, and ẑu is the BLUP of zu,172

ẑu = D
0
su(Dss)

�1(zs � µ̂s) + µ̂u, (8)

with µ̂s = Xs�̂GLS , µ̂u = Xu�̂GLS , and �̂GLS = (X0
sD

�1
ss Xs)�1

X
0
s(Dss)�1

zs, the generalized173

least squares estimator of �.174
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The prediction variance of the FPBK estimator is175

b
0
Db�G

0(Dss)
�1
G+H

0
EH, (9)

with

G = (Dss)bs +Dsubu,

H = X
0
b�X

0
s(Dss)

�1
G,

E = (X0
s(Dss)

�1
Xs)

�1.

The derivation of equations (7) - (9) can be found in Ver Hoef (2008). Note that the above model176

assumes that all animals or plants are detected so that there is no difference in the number of177

observed animals or plants and the true number of animals or plants at a particular site. In the178

following two models, we introduce the possibility that not all units at a particular site are observed.179

2.3 Spatial Population Estimator with Detection: Ratio then Add (SPEDRA)180

The first proposed model adjusts the observed counts for each sample unit by their estimated181

detection probabilities prior to spatial modeling. We first motivate our model by considering182

W (si)|{Z(si), P (si)} ⇠ Binomial(Z(si), P (si)), where W (si) is the observed count, P (si) is183

the estimated probability of detection of a single animal or plant, and Z(si) is the random variable184

for the true count at location si, defined in (5), which assumes perfect detection. Site si may be185

either a sampled or unsampled site.186

Now we suppose si denotes a sampled site. Let ps denote the vector of P (si), the estimated

probabilities of detection on the sampled sites, ⇡s denote the vector of expected values of ps, and

ws denote the vector of observed counts on the sampled sites. Let µs denote Xs�. If we assume

that P (si) is independent of Z(sj) for all si and sj , then E(ws) = ⇡s�µs and, using equations (1),

9
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(2), and (3),

var(ws) ⌘ C = diag(µs � ⇡s � (1� ⇡s)) + ⇡s⇡
0
s �Dss

+ µsµ
0
s �Vss +Dss �Vss, (10)

where Vss is the covariance matrix of the ps and 1 denotes a column vector of 1’s. While we187

could model ps with spatial random effects in much the same way as we did for abundance,188

it may often be the case that detection is an observation process that is under our control with189

well-known covariates that mitigate spatial autocorrelation. On the other hand, the abundance of190

natural resources, like animals or plants, are often inherently aggregated on the landscape with191

autocorrelated residual error. Additionally, in our application, we have very few nondetections for192

modeling spatial autocorrelation. Hence, in our simulations, and application, we assume detection193

variables are spatially independent.194

We can also write the covariance between the observed sample counts ws and the true counts195

on all of the sites z as cov(ws, z0) ⌘ R = ⇡s �
✓
Dss Dsu

◆
.196

We want to find ⌧̂(b0
z) = a

0
ws to predict b0

z̃. The goal is to find weights a, but now these197

weights are applied to the observed counts ws, not the true counts zs because the zs are unknown.198

Let Ma = E[(a0
ws�b

0
z)2] be the Mean Square Prediction Error (MSPE) for any particular a. Our199

goal is to find the BLUP; similar to Ver Hoef (2008), we want the “best” weights � such that200

1. E(�0
ws) = E(b0

z) and201

2. Ma �M� is non-negative for all a 6= �.202

First, we can restrict ourselves to the class of all unbiased estimators such that E(a0
ws) = E(b0

z)203

for all � in the marginal linear model for z in equation (5). This implies that a0(⇡s�Xs)� = b
0
X�204

for all �, or, equivalently, a0
X

⇤
s = b

0
X with X

⇤
s = (⇡s �Xs).205

Now we need to find the � that makes Ma � M� non-negative such that the unbiasedness

10
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constraint holds. If we minimize the MSPE, then we obtain the prediction equations
0

B@
C X

⇤
s

X
0⇤
s 0

1

CA

0

B@
�

L

1

CA =

0

B@
Rb

X
0
b

1

CA ,

where L is the LaGrange multiplier in the system of equations. Note the similarity in form between206

these prediction equations and the prediction equations in standard block kriging and also in FPBK207

assuming perfect detection in Ver Hoef (2008). Solving for �,208

�0 = b
0
R

0
C

�1 + (b0
X� b

0
R

0
C

�1
X

⇤
s)(X

⇤0
s C

�1
X

⇤
s)

�1
X

⇤0
s C

�1, (11)

we obtain our predictor as ⌧̂(b0
z) = �0

ws, with a prediction variance of209

var[⌧̂(b0
z)] = �0

C�� b
0
R

0�� �0
Rb+ b

0
Db. (12)

The above model could also be cast as a hierarchical model, [zs,ys,ps,�,⌃,✓3|ws,K,X],210

where K is a vector of 1’s and 0’s resulting from the sightability trials. A natural approach would211

be to adopt a Bayesian model with prior distributions and MCMC sampling. However, such an212

approach can be time consuming and relies on a great amount of statistical expertise. Our goal213

is to have a fairly automatic way for a non-statistician user to obtain results quickly and reliably.214

In several applications that use FPBK so far, dozens of surveys are completed annually, and each215

one cannot be a carefully tuned analysis. The present approach is fast and robust, relying only on216

moment assumptions. However, for the interested reader, we have also analyzed these data with a217

Bayesian hierarchical model (Higham, 2019).218

2.4 The Logistic Regression Model219

In order to use the above model, we must have some way to estimate the detection probabilities220

for the sites in the population of interest. In some animal surveys, there are radiocollared animals221

and separate sightability trials to model the imperfect detection of animals. Suppose that we have222

n radiocollared animals to be used for the sightability trials, indexed i = 1, . . . , n. For each i,223

Ki ⇠ Bernoulli(⇡i), where Ki is the random variable for whether or not a radiocollared animal is224

11
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detected. Also suppose that we have a design matrix U where each row contains covariates like225

habitat conditions or time spent surveying for predicting the detection probability in a particular226

site. Denote Ur as the design matrix for the sites with the radiocollared animals and ⇡r as the227

vector of probabilities that a radiocollared animal is sighted. Then we assume that we have the228

regression model229

logit(⇡r) = Ur�, (13)

where � is the parameter vector and logit(·) takes the logit of each element of (·).230

2.5 Estimation231

We next discuss estimation of the quantities in (11) and (12). If we denote Us as the rows of U232

corresponding to the sampled sites in the animal count survey, then logit(b⇡s) = Us�̂, where �̂233

is the estimator for � in standard logistic regression. The estimated detection probabilities b⇡s are234

then obtained through the element-wise inverse logit transformation on Us�̂. The b⇡s take the place235

of ps in the binomial model for ws, though, in a more general setting, ps could be obtained from236

a method other than logistic regression.237

We investigated using either nonparametric bootstrapping (Efron (1992)) or the delta method238

(Dorfman (1938), Ver Hoef (2012)) to estimate Vss, the covariance matrix of b⇡s, ultimately239

finding that bootstrapping produced more accurate results in simulations. Letting Uall denote the240

matrix combining the design matrix Ur and the sightability response vector (K1, K2, . . . , Kn)0,241

we perform 1400 nonparametric bootstraps of the rows of Uall, estimate �̂boot for each bootstrap,242

calculate b⇡s,boot, and find the empirical covariance of the 1400 b⇡s,boot vectors to obtain an estimator243

of Vss.244

We use maximum likelihood to obtain estimates for µs, denoted µ̂s, and the covariance parameters245

in D, denoted D̂, assuming the exponential covariance structure defined in (4). We use a normal246

likelihood model for the ws with the covariance matrix in equation (10), plugging in b⇡s and V̂ss.247
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Note that, for ease of estimation, we are using a misspecified normal likelihood for the correlated248

binomial counts. Our estimators for the mean and covariance parameters from misspecified maximum249

likelihood are consistent estimators for the µs and ✓ parameters that minimize the Kullback-Leibler250

distance between the misspecified distribution and the true distribution (White, 1982; Kullback251

and Leibler, 1951). Huber and others (1967) and White (1982) give additional examples and252

properties of maximum likelihood estimators under distribution misspecification. Then, we have253

D̂ = diag(✓̂3) + ⌃̂, X̂
⇤
s = (b⇡s � Xs), and, partitioning D̂ as in equation (6), R̂ = b⇡s �254 ✓

D̂ss D̂su

◆
. The estimated variance of the observed counts is255

cvar(ws) ⌘ Ĉ = diag(µ̂s � b⇡s � (1� b⇡s)) + b⇡sb⇡0
s � D̂ss + µ̂sµ̂

0
s � V̂ss + D̂ss � V̂ss. (14)

Finally, we obtain the following plug-in estimators for �, ⌧(b0
z), and var[⌧(b0

z)]:

�̂0 = b
0
R̂

0
Ĉ

�1 + (b0
X� b

0
R̂

0
Ĉ

�1
X̂

⇤
s)(X̂

⇤0

s Ĉ
�1
X̂

⇤
s)

�1
X̂

⇤0
s Ĉ

�1,

⌧̂(b0
z) = �̂0

ws,

cvar[⌧̂(b0
z)] = �̂0

Ĉ�̂� b
0
R̂

0
�̂� �̂0

R̂b+ b
0
D̂b.

2.6 Spatial Population Estimator with Detection: Add then Ratio (SPEDAR)256

The second proposed model uses the FPBK estimator defined in (7) on the observed counts and257

then divides by the estimated mean detection probability. Here, we use the notation obs as a258

reminder that kriging uses the observed counts. Using this notation, we can use the standard FPBK259

in (Ver Hoef, 2008) on the observed counts to obtain260

⌧̂obs(b
0
w) = b

0
sws + b

0
uŵu. (15)

Denote this predictor for the observed counts as ⌧̂obs. Also define ˆ̄⇡ =
mX

j=1

b⇡j

m
, the estimated mean261

detection probability where m is the number of sites in the count survey and j indexes the detection262

probabilities for the sites in the count survey. Then, we adjust estimator (15) by the mean detection263
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probability across the sampled sites to obtain the SPEDAR estimator264

⌧̂2(b
0
w) = ⌧̂obs ˆ̄⇡

�1. (16)

We obtain the prediction variance using a plug-in estimator in the scalar form of equation (1),265

var(⌧̂obs ˆ̄⇡
�1) = (E(⌧̂obs))2 var(ˆ̄⇡�1) +

�
E(ˆ̄⇡�1)

�2
var(⌧̂obs) + var(⌧̂obs) var(ˆ̄⇡

�1). (17)

We use bootstrapping to obtain an approximation for E(ˆ̄⇡�1) and var(ˆ̄⇡�1), resampling the rows266

of Uall as in the bootstrapping for SPEDRA estimator. Ê(ˆ̄⇡�1) and cvar(ˆ̄⇡�1) are then the mean267

and variance of the 1400 bootstrapped quantities of ˆ̄⇡�1. Putting the bootstrap estimates back into268

equation (17), as well as using the observed counts in equation (7) as an estimate for E(⌧̂obs) and269

using the observed counts in equation (9) to estimate var(⌧̂obs), gives an approximation to the270

prediction variance for the SPEDAR estimator.271

It is unclear whether SPEDAR is better than SPEDRA in terms of unbiasedness and prediction272

variance, but results from distance sampling (Manly et al., 1996; Borchers et al., 1998) and weighted273

semivariograms (Zimmerman and Ver Hoef, 2017) indicate that there could be substantial reduction274

in variance at the expense of a little more bias. Therefore, we include both the SPEDAR and the275

SPEDRA models here in an effort to compare the two in a simulation study in the FPBK setting.276

Note that we make slightly different assumptions about the nature of the spatial correlation in277

the counts in the SPEDRA and SPEDAR models. For SPEDRA, we assume that the total counts278

of animals per site are spatially autocorrelated according to some model while, for SPEDAR, we279

assume that the observed counts of animals per site are spatially autocorrelated according to some280

model. These assumptions are slightly different because, for SPEDRA we incorporate detection281

before performing kriging while, for SPEDAR, we perform kriging on the observed counts. The282

implications of these assumptions for which model might be better to use are given in Section 5.283
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3 Simulation Study284

We ran a Latin Square simulation experiment to cover a wide range of possible detection probabilities.285

A 3 ⇥ 3 Latin Square with three sightability sample sizes ndet 2 {60, 100, 200}, three possible286

levels of mean detection � 2 {0.25, 0.5, 0.75}, and three possible range parameters ✓2 2 {0.1, 5, 30}287

was replicated for each combination of two population means µ 2 {4, 8} and two detection288

variances �1 2 {1, 4} for low and high detection variances, respectively (Appendix A). �0cat refers289

to the level of mean detection (Low has a mean detection of 0.25, Medium has a mean detection of290

0.5, and High has a mean detection of 0.75). We simulated counts on a regular 1 ⇥ 1 unit grid. The291

total number of sites was 400, a 20 ⇥ 20 grid. For each simulation setting, we ran 1400 simulations292

with the partial sill fixed at 2, the nugget fixed at 0.02, and the count survey sample size fixed at293

100.294

We simulated spatially correlated normal random variables with the specified mean and covariance295

parameters assuming the exponential spatial autocorrelation model (rounding to the nearest non-negative296

integer) as the true counts. We then simulated the true detection probabilities for each site using the297

logistic regression parameters in Figure 1 with covariates simulated as Unif(0, 1) random variables.298

The observed counts were then simulated as binomial random variables with sizes equal to the299

true counts and probabilities equal to the true detection probabilities on a random sample of sites300

corresponding to the number of sites in the moose count survey. The sightability data were formed301

by generating ndet Bernoulli random variables using the true detection probabilities.302

The full results of the simulations are given in Appendix A. The coverage across all settings for303

SPEDRA is 0.882 with a minimum of 0.841 while the coverage across all settings for SPEDAR304

is 0.911 with a minimum of 0.882. We also included a simple random sample (SRS) estimator305

in the simulations to compare with SPEDRA and SPEDAR. SRS was calculated as N
m

Pm
i=1

wi
b⇡i

,306

where m denotes the number of sites in the count survey and N denotes the total number of sites307

in the study region. Results from three of the scenarios are shown in Figure 2. As expected, SRS308
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performs similarly to the two spatial estimators when the range parameter is small, as seen in309

Setting C. On the other hand, in Setting A, where there is a large amount of spatial correlation,310

SRS performs much more poorly than the spatial estimators. In all settings, SRS had a comparable311

or worse root Mean Square Prediction Error (rMSPE) than the SPEDRA and SPEDAR estimators312

so we only consider SPEDRA and SPEDAR henceforth.313

The results from the simulations are summarized as linear models, with the experimental units314

as the individual simulation settings, in Tables 1, 2, and 3. Table 1 uses SPEDRA rMSPE as the315

response with the simulation factors as predictors. All of the factors considered are significant at316

a significance level of 0.05 except for the level of the range parameter, ✓2. Table 2 uses SPEDAR317

rMSPE as the response with the simulation factors as predictors. The results are similar to those318

in Table 1, but now the detection variance factor (�1 = 4) is only weakly significant, indicating319

that, for SPEDAR, the variability in detection is a less important influence on rMSPE than it is for320

SPEDRA rMSPE. The signs of the point estimates in Table 1 and Table 2 are identical, showing321

that rMSPE tends to increase for: (1) larger means, (2) larger ranges, (3) lower mean detection, (4)322

lower detection variability, and (5) lower detection sample size.323

Table 3 uses the efficiency, rMSPE of SPEDRA divided by rMSPE of SPEDAR, as the response324

with the simulation factors as predictors. An efficiency greater than 1 indicates that SPEDAR is325

better than SPEDRA while an efficiency less than 1 indicates that SPEDRA is better than SPEDAR.326

SPEDRA does better than SPEDAR for higher levels of detection variability and higher levels327

of mean detection. The form of the detection function therefore drives the change in efficiency328

between SPEDRA and SPEDAR. As detection gets smaller, the efficiency increases due to the329

instabilities in dividing by small individual detections.330
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4 Application to Togiak March 2017 Survey331

4.1 Study Area Description332

The Togiak Wildlife Refuge, an area of about 21,000 km2 of land in southwestern Alaska, has seen333

an increase in moose since the early 1980s, when wildlife biologists believed there to be fewer than334

35 moose in the area (Benson et al., 2015). Togiak has historically been snow-covered beginning335

in November, the time of year traditionally used for moose surveys. On snow-covered ground,336

moose were easily sighted during surveys, resulting in a detection probability very close to 1 and337

assumed to be exactly 1 in subsequent statistical analyses. However, warming trends have resulted338

in inadequate snowfall for good moose detection in the past ten years and future changes are not339

expected to improve the situation (Park et al., 2012).340

Togiak is divided into sites that are approximately 17.6 km2 (Figure 3). The sampling frame for341

moose surveys excludes sites with airports, communities, coastal, and mountainous sites with no342

moose habitats. Togiak wildlife biologists stratify sample units into a high expected moose count343

(H) stratum and a low expected moose count (L) stratum based on previous knowledge of the344

moose distribution. Within each stratum, most sites are randomly selected to be part of a particular345

survey. The remaining sites that are sampled are non-randomly selected so that there are no large346

gaps or “holes” in the study region. Because the survey time typically only spans a few days,347

surveyors assume that there is no migration across sites during the time when moose are counted.348

Biologists then use finite population block kriging on the observed counts from each stratum, and349

subsequently sum the stratum estimates to obtain a total abundance estimate. However, because of350

changing snow conditions and more difficult moose detectability, the number of observed moose351

is now thought to be substantially less than the true number of moose.352
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4.2 Stratification353

We applied both estimators to both the October 2016 Togiak moose survey data and the March354

2017 Togiak moose survey data. In the Togiak surveys, stratification is used to increase the355

precision of the estimate of the total because wildlife biologists familiar with the study region356

typically have some knowledge about where to expect high counts and where to expect low counts357

of animals. Additionally, in geostatistical approaches, we typically assume stationarity across the358

study area. Stratifying can help with the assumption of a constant mean, particularly in models359

without any covariates. Instead of assuming a constant mean across all sites, we now assume a360

constant mean within each stratum. When we incorporate stratification in the FPBK model with361

imperfect detection, we assume there is no cross-correlation between strata. However, correlation362

between the estimators for the two strata still arises because the estimators for the totals in the two363

strata depend on the same sightability model. In other words, the b⇡s vectors for each stratum will364

typically be positively correlated. Additionally, the sites in Togiak are not all exactly equal in area365

because of each site’s varying latitude and longitude. Therefore, we actually perform SPEDRA366

and SPEDAR on the densities, not the counts. The details of transforming from densities back367

to counts and of working stratification into the SPEDRA and SPEDAR estimators are given in368

Appendices B and C, respectively.369

4.3 Application Results370

We present the results for the March 2017 survey in detail here. Survey time and the proportions371

of water, birch, dwarf shrub, alder, and willow in a particular site served as possible covariates372

for the detection model. For the March sightability trials, 42 of the 50 moose were detected and,373

through an all-subsets selection procedure based on the Akaiki Information Criterion (Akaike,374

1974), none of the possible covariates were informative in predicting the detection probability.375

There is little spatial autocorrelation among the moose counts in the low stratum, but there is a376
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moderate amount of spatial autocorrelation in the high stratum (Figure 4). We also checked the377

assumption of stationarity in the high stratum by comparing variograms for different quadrants of378

the study area. In this case, there was no strong violation of stationarity in the high stratum while379

the low stratum had too few data points to construct multiple semi-variograms for different regions.380

Note that each semi-variogram uses the naive ẑi = wi/b⇡i as observations to compute the empirical381

variogram. Therefore, particularly in the low stratum where there is a large abundance of zeroes,382

the variogram appears to fit the “observations” poorly. The zeroes are not inflated at all in our naive383

“observations,” which drives up the variance in the empirical variogram while our fitted variogram384

model using maximum likelihood estimation accounts for some inflation of the zero counts.385

Figure 5 shows a few sites with very high predicted counts in the high stratum while most386

other sites are predicted to have few or no moose. The SPEDRA estimator yielded a total estimate387

of 3658 moose while SPEDAR estimator yielded a total estimate of 3645. Approximate 90%388

normal-based prediction intervals for the total number of moose at the Togiak Wildlife Refuge389

were (2839, 4478) moose using SPEDRA and (2785, 4505) moose using SPEDAR. In this case,390

both the estimates and the standard errors were approximately equal for the two estimators.391

4.4 Application Simulation392

In addition to the full simulation study in Section 3, we also ran 2000 simulations for a stratified393

scenario with counts and detection similar to the March 2017 Togiak survey, where we wanted394

to incorporate simulated data that is zero-inflated as well as overdispersed for the animal counts.395

Therefore, we simulated the true counts on each site as spatially correlated negative binomial396

random variables. The procedure follows that of Madsen and Birkes (2013) except that, in order to397

save simulation time, accounting for ties in the discrete negative binomial data is ignored so that398

the spatial correlation between the counts only approximately follows the specified correlation.399

SPEDRA and SPEDAR had similar biases (31.6 and 29.3, respectively), rMSPEs (524 and 513),400

coverages (0.906 and 0.897), and median confidence interval lengths (1664 and 1626) for the401
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March 2017 Togiak stratified simulation setting. Because detection probabilities were estimated to402

be identical across all sites, SPEDRA and SPEDAR should be similar (though not identical) so the403

comparable results of the application simulation are not surprising.404

5 Discussion405

We have developed a spatial model that allows incorporation of imperfect detection in population406

abundance prediction. The model that incorporates detection probability sitewise (SPEDRA)407

outperforms the model that divides the predicted observed count total by the mean detection408

(SPEDAR) in simulation settings. Using detection data from radiocollared animals, we have409

applied the model to predict moose abundance in the Togiak National Wildlife Refuge. Both410

SPEDRA and SPEDAR yield similar predictions and standard errors for the Togiak moose data.411

Note that SPEDRA and SPEDAR have lower rMSPE (131 and 215 units, respectively) than the412

SRS estimator (320 units) (Figure 2, Setting A), unless counts were simulated with little spatial413

correlation (Figure 2, Setting C). The SRS estimator shows no advantage in our simulations in414

terms of bias or rMSPE, even in settings with little spatial autocorrelation. Therefore, we only415

recommend it for its simplicity when there is little spatial autocorrelation and sites are chosen416

randomly. We estimated positive spatial correlation in one of the strata in our application (Figure417

4), and unsampled sites near sites with large counts had large predicted counts (Figure 5). When418

no spatial autocorrelation occurs, SPEDRA/SPEDAR predictions at all unsampled sites in each419

stratum will be the sample mean for that stratum (either before or after adjusting for detection),420

and we would get the same result if using an extension of SRS to predict at unsampled sites.421

SPEDRA outperformed SPEDAR for rMSPE in almost all simulation scenarios (Appendix A).422

Additionally, a major difference in the two estimators is that SPEDRA assumes stationarity in the423

true counts while SPEDAR assumes stationarity in the observed counts. Checking this assumption424

is difficult because we never actually observe the true counts. However, we believe that it is more425

reasonable to assume stationarity in the true counts, not the observed counts. For example, suppose426
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there are no covariates for the counts so that the true counts have a constant mean throughout some427

study area. Let the northern half of the area have low sightability, both true and estimated, and428

let the southern half have high sightability, both true and estimated. Then the different detection429

rates would induce a trend in the observed counts that would show up as autocorrelation in the430

spatial model of SPEDAR, but SPEDRA would correct for that trend. We do note, however, that431

SPEDRA has an advantage in our simulation study in that we always generate observed counts432

using the SPEDRA model.433

In making a map of site predictions, SPEDRA predictions for sites with observed zeros are434

slightly positive, taking into account the possibility that a unit was missed, while SPEDAR predictions435

for sites with observed zeros are exactly zero, which is not realistic unless detection is perfect. In436

choosing between the two estimators, we recommend SPEDRA as opposed to SPEDAR because437

SPEDRA is more theoretically sound and it performed better in simulations, with the main exception438

occuring when detection probabilities were very low (Table 3).439

Further research is needed on other spatial models for finite populations that incorporate detection.440

Fully model-based Bayesian hierarchical models are becoming faster and easier to use, but still441

require substantial time and expertise. Peters et al. (2014) used a distance sampling method to442

estimate a moose population total in Alberta, Canada, and it would be interesting to compare443

SPEDRA to a distance sampling survey of roughly equal cost. Sightability trials for SPEDRA and444

SPEDAR may be conducted for each survey, or a static detection model could be developed from445

historical sightability data for a region. Christ (2011) notes the high cost of obtaining sightability446

data, favoring a static model, but that conditions could vary in the future, favoring fresh data for447

each survey. More research and practice with SPEDRA and SPEDAR will help create future448

improvements.449

Additional information and supporting material for this article is available online at the journal’s450

website. The data used for the March 2017 Togiak analysis is also provided.451
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Table 1: Linear model results with SPEDRA rMSPE as the response and the simulation settings
as experimental units. �0cat indicates the level of mean detection (Low = 0.25, Medium = 0.5,
and High = 0.75). The reference group has the following simulation parameters: true mean count
µ = 4, range ✓2 = 0.1, �0cat = High, logistic regression slope �1 = 1, and detection sample size
ndet = 60.

Parameter Estimate Std. Error p-value
Intercept 176.61 34.55 < 0.0001
µ = 8 146.28 23.03 < 0.0001
✓2 = 30 11.58 28.21 0.6846
✓2 = 5 7.83 28.21 0.7834
�0cat = Low 261.83 28.21 < 0.0001
�0cat =Medium 89.33 28.21 0.0038
�1 = 4 -90.72 23.03 0.0005
ndet = 100 -72.50 28.21 0.0160
ndet = 200 -138.33 28.21 < 0.0001
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Table 2: Linear model results with SPEDAR rMSPE as the response and the simulation settings
as experimental units. �0cat indicates the level of mean detection (Low = 0.25, Medium = 0.5,
and High = 0.75). The reference group has the following simulation parameters: true mean count
µ = 4, range ✓2 = 0.1, �0cat = High, logistic regression slope �1 = 1, and detection sample size
ndet = 60.

Parameter Estimate Std. Error p-value
Intercept 176.92 33.13 < 0.0001
µ = 8 169.94 22.08 < 0.0001
✓2 = 30 17.17 27.05 0.5310
✓2 = 5 13.50 27.05 0.6217
�0cat = Low 256.83 27.05 0.0000
�0cat = Medium 89.58 27.05 0.0026
�1 = 4 -42.50 22.08 0.0649
ndet = 100 -82.50 27.05 0.0051
ndet = 200 -162.08 27.05 < 0.0001
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Table 3: Linear model results with efficiency (rMSPE of SPEDRA divided by rMSPE of SPEDAR)
as the response and the simulation settings as experimental units. �0cat indicates the level of mean
detection (Low = 0.25, Medium = 0.5, and High = 0.75). The reference group has the following
simulation parameters: true mean count µ = 4, range ✓2 = 0.1, �0cat = High, logistic regression
slope �1 = 1, and detection sample size ndet = 60.

Parameter Estimate Std. Error p-value
Intercept 0.961 0.032 < 0.0001
µ = 8 -0.030 0.021 0.1721
✓2 = 30 -0.038 0.026 0.1601
✓2 = 5 -0.027 0.026 0.3097
�0cat = Low 0.106 0.026 0.0004
�0cat = Medium 0.052 0.026 0.0573
�1 = 4 -0.195 0.021 < 0.0001
ndet = 100 0.001 0.026 0.9735
ndet = 200 0.035 0.026 0.1996
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